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Abstract
In this paper, we argue that networks should be able to
explain to their operators why they are in a certain state,
even if – and particularly if – they have been compro-
mised by an attacker. Such a capability would be useful
in forensic investigations, where an operator observes
an unexpected state and must decide whether it is be-
nign or an indication that the system has been compro-
mised. Using a very pessimistic threat model in which
a malicious adversary can completely compromise an
arbitrary subset of the nodes in the network, we argue
that we cannot expect to get a complete and correct ex-
planation in all possible cases. However, we also show
that, based on recent advances in the systems and the
database communities, it seems possible to get a slightly
weaker guarantee: for any state change that directly or
indirectly affects a correct node, we can either obtain
a correct explanation or eventually identify at least one
compromised node. We discuss the challenges involved
in building systems that provide this property, and we
report initial results from an early prototype.

1 Introduction
Operators of networks often find themselves needing to
answer a diagnostic or forensic question. As an illus-
trative example, we consider the scenario where a de-
ployed network is found to be in an unexpected state: a
suspicious routing table entry is discovered or a proxy
cache is found to contain an unusually large number of
entries. The operator must determine the causes of this
state before he can decide on an appropriate response.
On the one hand, there may be an innocent explanation:
the routing table entry may be caused by a misconfig-
uration, or the cache entries may simply be the result
of a workload change. On the other hand, the unex-
pected state may be the symptom of an ongoing attack:
the routing table entry may be the result of route hijack-
ing, and the cache entries may be a side-effect of a mal-
ware infection. If the network is indeed under attack, the
operators must act quickly to prevent further damage.

Once an attack or intrusion is discovered, a different
challenge arises. Suppose the operators have discov-

ered that a certain set of nodes has been compromised.
To repair the damage, it may be insufficient to disin-
fect these specific nodes, since the damage may have
already spread to the rest of the network. For example,
the adversary may have already polluted routing tables
on other nodes, which may allow the adversary to con-
tinue her control on the network traffics even after the
compromised node is taken offline. Restoring a backup
of the entire network would solve this problem, but such
a solution is disruptive and might cause a considerable
amount of work to be lost. It would be more preferable
if the operators could determine the precise effects of the
intrusion.

In this paper, we ask a very simple question: Is there
a way to build networks such that they can explain their
own state, even if (and especially if) they are under at-
tack? Networks of this type, which we refer to as self-
explaining networks, could help with both of the tasks
we have motivated above. To solve the first task, the op-
erator could simply ask: ‘Why does the routing table on
node X contain an entry Y?’. The network might then
respond, for example, by explaining that the entry was
created as a result of a configuration change on another
node Z, which caused a previously blocked route to be
propagated to X. From this, the operator might learn that
an unauthorized person had accessed the console on Z
at time T. He could then solve the second task by asking
what other changes had been made on Z around time T,
and how they had (transitively) affected the rest of the
network. He could then identify the affected nodes and
undo any damage that had been done to them.

Designing a self-explaining network involves at least
two major challenges. First, it is not at all obvious how
such ‘why’-questions can be formulated, or what the an-
swer should look like. Second, it is not immediately
clear that the system can even generate a useful answer.
This is because the most important questions are inher-
ently asked at the most inconvenient time, namely when
the system is already under attack. The more severe the
attack, the more important a correct answer becomes! A
simple portscan or a failed sudo is easy to detect but
also not particularly dangerous. The moment of truth
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Figure 1: Example scenario. In the unmodified system (left), network A’s policy does not allow cross traffic, so Alice
can reach foo.com only through networks B and C. If evil Eve can compromise A’s router (right), she can change
this policy and thus gain the ability to listen to Alice’s traffic.

comes when an attacker is exploiting a bug in the hyper-
visor or is circumventing the trusted hardware module,
or when a malicious insider has installed malware on the
majority of the nodes, which are now providing incor-
rect data in order to confuse the operator. Attacks of this
magnitude are rare, but they do occur [10, 16, 23], and
even for less spectacular attacks it is difficult to antici-
pate which of the (typically many) assumptions behind
a network design the attacker may be able to violate.

In this work, our goal is to build a self-explaining
network that can function even during very severe at-
tacks. Hence, we assume that the adversary can gain
complete control over the nodes he has compromised.
This is a major difference to prior work, which typi-
cally assumes some kind of trusted component, such as a
trusted kernel [11, 17], a trusted VMM [1], a trusted in-
frastructure [22, 24], or trusted hardware [4]. A network
that does not rely on such trusted components should be
harder to attack successfully; however, it will also be
more difficult to build.

Nevertheless, there is evidence that it may be possible
to build practical self-explaining networks. On the one
hand, the systems community has recently developed
techniques for fault detection that require only minimal
assumptions; techniques like PeerReview [7] work in
the presence of arbitrary Byzantine faults and do not re-
quire a bound on the number of compromised nodes or
trust in any hardware or software on such nodes. On the
other hand, the database community has been working
on data provenance [3, 25], which provides a way to for-
mulate ‘why’-questions in such a way that they can be
processed and answered automatically.

By itself, neither technology is sufficient to solve the
problem. PeerReview, for example, can detect certain
types of faults automatically – specifically, incorrect
state transitions – but it is not effective against other
fault classes, such as instabilities arising from interac-
tions between multiple nodes, and it cannot explain the
problem or determine its effects on other nodes. Exist-
ing data provenance techniques, on the other hand, can
only answer ‘why’-questions in the absence of faults or

attacks; they cannot detect when faulty nodes forge in-
correct responses. Although secure provenance tech-
niques do exist [8], they are designed for application
data and cannot handle common forms of misbehavior
in networks, such as equivocation. Finally, as we will
explain in Section 3, it is also not sufficient to simply
layer a provenance system on top of a fault detection
system, since the adversary can exploit interactions be-
tween the two layers to conceal an attack. This problem
is fundamental and not merely a consequence of a few
bugs; for example, the existing provenance models need
to be extended and refined before they can be safely used
in an adversarial setting.

Under the very pessimistic threat model we consider
here, it seems infeasible to guarantee that the system
will completely and correctly answer queries in all pos-
sible circumstances. However, it is possible to guaran-
tee something slightly weaker: for any state change that
directly or indirectly affects at least one correct node,
we can either obtain a correct explanation or eventually
identify where the compromised nodes have lied. Since
the operator learns something useful in both cases, this
seems like an attractive property for a practical system.

In the rest of this paper, we describe our vision of
self-explaining networks that is based on a combination
of these two technologies. We outline the challenges
beyond these two technologies that will have to be ad-
dressed to make this vision a reality – such as adapting
the provenance models from databases for use in a po-
tentially maclicious network, developing suitable mech-
anisms for extracting and tracking provenance, formal-
izing and proving the guarantees to be offered by self-
explaining networks, preventing private and confiden-
tial data from leaking through ‘why’-questions, and ef-
ficiently maintaining the data necessary to answer such
questions. We also report some early experience with a
prototype system we have been working on.
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2 Self-explaining networks
To explain the concept of self-explaining networks in
more detail, we begin by discussing a simple example
scenario, in which an adversary (evil Eve) compromises
part of the Internet’s interdomain routing system and di-
verts traffic in an attempt to eavesdrop on another user
(Alice). We focus on interdomain routing here because
it is known to be plagued with a variety of well-studied
problems, ranging from benign equipment failures to
deliberate attacks [18]; however, we expect our idea to
be applicable to other networks, and perhaps even dis-
tributed systems in general.

Consider the scenario in Figure 1, in which Alice is
using a service at foo.com. In the original system
(left), network A’s policy does not allow cross traffic,
so Alice’s only viable route is r1 through networks B
and C. If Eve is able to compromise A’s router, she can
change this policy (right) and thus cause Alice’s router
to switch to the new, shorter route r2 through network A,
thus enabling Eve to eavesdrop on Alice’s traffic. How-
ever, note that Alice’s system administrator (Bob) can-
not observe the cause of this change, only its effect. Bob
may notice the new, unfamiliar route, but he cannot eas-
ily determine why it appeared.

Moreover, Eve can thwart an investigation by mak-
ing the compromised router lie to Bob. For example,
she could make it appear as if the route through A had
always existed, or that the cause of the change was an
event in another network. This may send Bob in the
wrong direction or cause him to abandon the investiga-
tion because everything appears to be fine. To enable
a reliable, timely response to such attacks, we need a
secure tracking system that leaves even the smartest at-
tacker no chance to escape detection.

2.1 Provenance and the provenance graph
Our goal in this case is to enable Bob to ask why the
new route appeared, in such a way that Eve cannot lie
without giving herself away. In the absence of adver-
saries, this can be done by using data provenance [3].
A data provenance system tracks all dependencies be-
tween data in the system – for example, that network B
got the route to foo.com from network C, and that it
exported it to Alice’s network after applying some trans-
formations to it. Conceptually, these dependencies form
a global provenance graph, whose nodes represent data
and whose edges represent processing steps.

Many ‘why’-questions (and, more generally, ques-
tions about causes and effects) can be answered by sub-
graphs of the provenance graph. For example, to deter-
mine the causes of a datum d, we can traverse the graph
upwards from d until we arrive at a set of base nodes,
such as local inputs, which have no further dependen-
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Figure 2: Provenance tree explaining a routing change
(“+” and “–” indicate value insertion and deletion).

cies. Similarly, we can determine the effects of d by
traversing the graph downwards to a set of leaf nodes.
As an example, Figure 2 shows the subgraph that ex-
plains the switch from route r1 to r2 at Alice’s network
as being caused by Eve’s policy change on router r2.

2.2 Ideal solution
An ideal self-explaining network would be able to return
such responses even when it is under attack. In partic-
ular, the responses would be complete and correct, i.e.,
contain the whole truth, and nothing but the truth. How-
ever, recall that we have assumed that an adversary may
have complete control over an arbitrary subset of the
nodes in the system, which enables her, for example,
to refuse to record provenance information, lie to the
querier, suppress information on the nodes she controls,
or even forge information to make honest nodes appear
faulty. The only thing we assume she cannot do is invert
hash functions or forge cryptographic signatures.

It seems clear that, under these conditions, building
the ideal system is impossible. The provenance informa-
tion must necessarily be stored somewhere, and, in the
absence of trusted components, there is always a pos-
sibility that the adversary has compromised exactly the
nodes that are storing the telltale information.

2.3 Practical approximation
While the ideal system seems infeasible, we can at least
build something very close to it, based on two key in-
sights. First, we can restrict the guarantees to observ-
able behavior, i.e., actions by the adversary that directly
or indirectly affect at least one correct node. This limita-
tion is fundamental [6]. Second, we can weaken the re-
quirements a bit and accept that nodes may lie temporar-
ily, as long as lies are eventually detected and iden-
tified as such. In other words, Bob might briefly see
a plausible but incorrect explanation of the bad route,
but soon afterward the system reports the compromised
router and flags the affected parts of the explanation. As
long as the detection period can be kept short (on the
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order of network round-trip times), this does not seem
unduly restrictive, and it is sufficient to arrive at a prac-
tical solution.

3 Requirements
We now turn to the question how to build such a practi-
cal self-explaining network, which will need at least the
following four components:

• A mechanism for tracking the provenance of the
state in the network and for constructing the prove-
nance graph;

• A storage system for securely and efficiently stor-
ing the provenance;

• A query language for asking ‘why’-questions; and

• A query processor for answering ‘why’-questions
in such a way that inaccurate or missing informa-
tion from compromised nodes can be detected.

In designing these components, we can build on
a body of prior work in both the systems and the
database community, e.g., on tracking provenance [17,
25], tamper-evident logging and fault detection [7], and
query processing for provenance data [9]. Also, there is
existing work on multi-host forensics [2, 12]. However,
existing solutions typically require trust in at least some
components of the system, such as the OS, the hyper-
visor, or some special hardware; in fact, many existing
provenance systems are designed for scenarios where all
nodes are correct. Since we would like self-explaining
networks to work “when all else fails”, we want to avoid
such trust assumptions to the extent possible.
Strawman: PeerReview + ExSPAN. At first glance,
there seems to be a simple way to build a self-explaining
network, namely combining a provenance system with
a tamper-evident log and a fault detector. However,
when dealing with a malicious adversary, such ad-hoc
solutions rarely work. Consider, for example, a straw-
man solution that consists of two state-of-the-art solu-
tions, PeerReview [7] and ExSPAN [25] . PeerReview
can detect a large set of faults and misbehaviors, while
ExSPAN can extract and query provenance data from
distributed applications written using Network Data-
log [13]. It would appear, therefore, that a combina-
tion of the two could detect faults and answer prove-
nance queries. However, this strawman approach is in
fact insufficient. The combination could not give any
meaningful guarantees on query responses once nodes
have been compromised. This is because although Peer-
Review would correctly detect such nodes, the compro-
mised nodes could corrupt the provenance information
on other nodes before they can be evicted, causing future

query responses to be inaccurate or even correct nodes
to appear faulty. We will outline these challenges and
more in the next section.

4 Towards a practical system

In order for self-explaining networks to have strong and
provable properties, we need to design a provenance
model and a query processor specifically for the adver-
sarial setting. In addition, there are numerous other
challenges that have to be solved, such as OS support for
extracting provenance, storing the provenance securely,
or preventing private and confidential data from being
exposed through the provenance records.

4.1 Provenance model

The classical notion of provenance focuses on currently
extant state in a quiescent system. This is not sufficient
for an adversarial setting, for at least three reasons.

First, by the time a symptom is noticed, the adver-
sary may already have covered his tracks by deleting the
original cause from the network. Thus, we need a way to
query the provenance of past states. Also, if provenance
is only guaranteed to work when the network is quies-
cent, the adversary can prevent forensic queries, e.g., by
causing oscillations. To capture past and transient states,
we need to extend the provenance model with a tempo-
ral dimension. This can be done by attaching a time
interval to indicate when state is (or was) valid, and by
capturing information flow through messages.

Second, merely explaining extant state is not enough.
Sometimes the event of interest is a change from one
state to the other, or the appearance or disappearance
of state. To produce meaningful explanations of state
changes, we need to capture dependencies between state
changes as well.

Finally, since there is no central trusted component
that could store the entire provenance graph, we need a
way to partition the graph in such a way that each node
can store a piece of it. The natural way to do this is to
have each node store the provenance of the state it main-
tains locally. However, classical provenance graphs con-
tain certain vertices that pertain to more than one node;
for example, a message transmission pertains to both the
sender and the receiver. If one of them were allowed to
keep the entire vertex (as is done in ExSPAN’s network
provenance [25] model), an adversary that compromises
this node could manipulate the vertex and potentially
make the other (correct) node appear faulty. To prevent
this, we must split and interconnect such vertices so that
the graph can be partitioned cleanly.
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4.2 Extracting provenance

A challenge faced by any provenance system is to ex-
tract the provenance of data from the target applica-
tion. Depending on how the network components are
implemented, this can be done in at least two ways. If
the component is being designed from scratch or the
source code is available, the developers can add explic-
itly declare the dependencies between network states by
adding provenance annotations [17]. For this approach
to work, the developers must have a good understand-
ing of the source code, since they are responsible for the
correctness of the declaration. Alternatively, it is pos-
sible to infer coarse-grained dependency relationships
from a component’s inputs and outputs. In this ap-
proach, components can be treated as black boxes (for
reasons such as business secrets, missing source code,
or lack of extensive understanding of the system). Sup-
port from operating systems is desirable: an OS-level
wrapper around the target applications can actively cap-
ture inter-node (or inter-processes) communications and
other system calls, providing us with a convenient inter-
face to extract I/O for inference.

4.3 Storing provenance

To detect when nodes lie about provenance, we must
store the provenance information in a suitable data struc-
ture. Here, we can build on previous work on tamper-
evident logs [7]. Briefly, this involves signing and ac-
knowledging all messages, as well as exchanging infor-
mation about each message with some other nodes to
detect inconsistencies. This does not actually prevent
tampering, but it ensures that correct nodes can detect
when a compromised node tampers with its log, which
is consistent with our goal from Section 2.

A serious concern for self-explaining networks is ef-
ficiency. Many state-of-the-art provenance systems [5,
17, 25] actively maintain provenance for each piece of
extant state. If this were done for all past states as well,
the overhead would be enormous. Our key insight is
that we can expect queries to be relatively rare (they are
needed only when an attack is suspected), so we can
trade some query performance for better storage effi-
ciency. We can do this by storing not the entire prove-
nance graph, but only enough information to securely
reconstruct the parts of the graph that are needed to an-
swer a given query. For example, if the network imple-
mentation is deterministic, it is sufficient to have each
node store all inputs; the rest of the graph can be re-
constructed through deterministic replay. If checkpoints
are recorded periodically, replay can start at the nearest
checkpoint rather than at the beginning of the log.

4.4 Querying provenance
Querying is the heart and soul of a self-explaining net-
work. To be maximally useful, the system should sup-
port a variety of provenance queries, and, of course, it
should be possible to tell from the responses whether a
compromised node has lied.
Graph-based query language. The most obvious
questions to ask a self-explaining network are 1) about
the causes of a network state s, and 2) about the ef-
fects of s. The algorithm for answering such ques-
tions could easily be hard-coded. However, we expect
that there are many other questions that could profitably
be asked – and be answered using information the sys-
tem already maintains – such as the question whether a
particular invariant that spans multiple nodes was ever
violated. Given that provenance essentially forms a
graph, we conjecture that graph-based languages such
as ProQL [9] are promising candidates for formulating
arbitrary queries and transformations over provenance
data.
Secure recursive querying. If the optimization from
Section 4.3 is used and the network records only enough
data to reconstruct the provenance graph when neces-
sary, another challenge arises, since the replay-based re-
construction itself might be compromised if it is car-
ried out at a remote node. To avoid this, we can al-
ways ship the logs to the querying node and perform
the reconstruction there. This is possible because data
integrity can in principle be verified through the tamper-
evident log; however, doing so efficiently requires ad-
ditional support because the original data structure can
only verify the entire graph, not individual subgraphs.
Thus, the reconstruction process starts from the network
state specified in the query and recursively traverses the
provenance graph, requesting subgraphs from nodes as
necessary, until base or leaf vertices are reached.

4.5 Privacy and access control
In some instances, it may be necessary to treat prove-
nance data as confidential – particularly if the self-
explaining network has more than one administrative
domain (e.g. ASes in the inter-domain routing). In this
case, each domain may want to restrict what provenance
information can be seen by nodes in other domains.
Thus, it should be possible for provenance information
to be hidden (encrypted) based, e.g., on roles or secu-
rity levels. A naı̈ve implementation of provenance may
result in information leakage by exposing sensitive in-
formation to the recipients of the provenance data, some
of which may be unauthorized to access the leaked data.
We conjecture that one can utilize information hiding
techniques [15] to support fine-grained confidentiality
controls, by partially encrypting provenance in a key-
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based tree-structured architecture. Another promising
approach would be to support a multi-level provenance
model [17, 19] and to evaluate queries only within cer-
tain levels.

4.6 Overhead
Two main sources of the overhead incurred by prove-
nance systems come from the maintenance and querying
of provenance. Noticing the relative rareness of prove-
nance queries, we bias the priority to minimizing the
maintenance overhead (discussed in Section 4.3). We
expect the maintenance overhead (mainly on storage) is
affordable given the vast storage units available at a rea-
sonable price. Our preliminary experience echos this
expectation (see Section 5).

On the other hand, provenance querying, incurs high
communication overhead due to the need of shipping
logs and snapshots to the querying node. While it is
not impractical, considering the rareness of provenance
querying, it does deserve further optimizations. For in-
stance, the nodes involved in a query may only ship the
logs containing the events that may contribute to the fi-
nal result.

5 Status and ongoing work
We are currently working on a prototype framework
for self-explaining networks that uses ExSPAN [25],
with the extended provenance model described in Sec-
tion 4.1, for maintaining and tracking network prove-
nance, RapidNet [21] for distributed execution of ExS-
PAN queries, and PeerReview [7] for distributed tamper-
evident logging. An additional proxy server is utilized to
intercept incoming and outgoing messages of each node
and feed them into the system. In addition, we are cur-
rently enhancing our framework by addressing each of
the challenges described in Section 4.

As a proof of concept, we have applied this system
to two applications: Quagga [20], an open-source im-
plementation of BGP, and a declarative implementation
of the the Chord distributed hash table [14]. Our initial
results indicate that the overhead will be low enough to
be practical. For example, a moderately sized Internet
network would need to record only 492 GB provenance
data per year, which can easily fit onto a commodity
hard disk. The communication overhead is a constant
factor over the original traffic and does not affect the
scalability of the protocol. The aggregate traffic for an-
swering a query is less than 2 MB on average, and the
result is returned within 18 seconds.
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